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The classical reaction path Hamiltonian formulation of Miller, Handy, and Adams is reformulated using a
linear expansion of the gradient in internal coordinates. It leads to a correspondence between the arc length,
s, along the intrinsic reaction coordinate, and the whole set of internal coordinates and, furthermore, to a
dynamical equation fos, a second-order Bernoulli-type equation, which is analytically solvable inside the
validity range of the quadratic expansion of the potential. Therefore, by virtue of the above correspondence,
the time dependence of the whole set of internal coordinates is easily recovered, by means of a few functional
and overlap evaluations. It thus enhances the computational performance of the overall direct dynamics method.
The unimolecular 1,2 hydrogen migration, between the (corresponding) carbene and ethyne oxide, is considered
as example for illustrative purposes.

I. Introduction is preferentially sampled. This combines with the fact that
icient algorithms were developed for such MEP following
standard quantum chemistry calculations. The result is that
the number of structure calculations is reduced to that corre-
sponding to the MEP, plus a normal-mode analysis performed
eat each relevant point along it.

Much progress has been made recently on accurate theoretica{laff
treatments of the dynamics of molecular systénawerful
classical, semiclassical, and quantum mechanical techniques
combined with the availability of impressive computational
resources, have led to a number of interesting applications. Thes . . .
range from essentially exact treatments of triatomic systems to 1€ RPH ideas were consistently completed by formulating
approximate, but fairly accurate, studies of large polyatomic the Hamllto_nlan for the nuclear_motlon in terms o_f mact_lon
molecules, including processes such as electronic nonadiabatid@th coordinate systefi® The issue of developing suitable
transitions, reactions at surfaces, solvent effects, cluster re-coordinate systems for the description of dynamical problems
arrangements, efc. is ubiquitous in molecular scienéédt became especially relevant

In practical terms, though, two main difficulties still arise for treating chemical reggtions, be_cause, usually, a rearrangement
when performing such ab initio studies. The first one is the Process renders inefficient an important class of the most

computation of the potential energy surface, which has to be, ©°Mmon coordmhate SyStfemS’ le.g. thosehtledb to _onedof the
frequently, fitted to an analytical function. As the dimensionality arrangements.lT e RPH ormu ation can thus be viewed as an
of the system increases, so does, exponentially, the number offfort along this line, that directly accounts for the fragment

quantum chemistry calculations necessary to cover the Conﬁg_reorganizat'ion leading to chemical reaction. The RPH is then
uration space. Also involved is the fit to the analytical function. €XPressed in terms of an arc length, along the MEP, plus-3N

The second difficulty, which bears a common origin with the 7 normal mode vibrational coordinates orthogonal to it, where

first one, is the exponential increase in computational effort N iS the number of atoms.
needed to explore the nuclear dynamics of these increasingly Central to the final RPH expression are the “couplings”, i.e.,
complex systems. The previously quoted advances have certainlynatrix elements that are ultimately responsible for the energy
reduced the overall computational effort, yet the exponential transfer between each degree of freeddhin any other
growth of it still persists. formulation, the energy transfer taking place among degrees of
As a consequence, the specific search for approximate yetfreedom, thanks to the PES topography, is actually “hidden” in
accurate methods for exploring the structure-plus-dynamics its usually obscure dependence on each coordinate. Conversely,
molecular problem is remarkably intense. An appealing idea, the RPH couplings show these transfers more explicitly, thus
which intelligently synthesized some interesting previous ef- reflecting the importance of the reaction path curvature, as well
forts2 was set forth by Miller, Handy, Adams in 198@yhen as any change in the vibrational mode features, as one advances
the reaction path Hamiltonian (RPH) was proposed. It exploits @long the reaction coordinate. Overall, one obtains a chemically
the fact that, in the course of a rearrangement, a path is describegound way of incorporating the dynamics in the description of
in going from reactants to products that is sufficiently close to @ reaction mechanism. In addition, with the use of a RPH, one
the minimum energy path (MEP). Therefore, some kind of may expect that the essential items of a reactive process are

“guidance” exists and just a given portion of configuration space taken into account, whereas the less essential parts may be
treated accurately by either factoring them out or including them

t This paper is dedicated to Prof. William H. Miller on the occasion of by means of approximate methods. Actually, both the description

his 60th anniversary. o of structural features and the development of more or less
¢gg”;stg%’g[‘%ea‘gg?ééigig jmbofill@go.ub.es approximate dynamical theories, under the reaction path phi-
§ Deganamem de Omica Orgaica. losophy, have been actively pursued by a number of wc_>ﬁ<ers.
I Centre Especial de Recerca en’Qiga Tevica. Especially interesting have been the efforts in recasting the
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transition state theory within the context of the reaction path size to keep the validity of the quadratic expansion. The present
Hamiltonian® work intends to provide a test of this approximation.

The Miller, Handy, Adams (MHA) dynamical formulation The remainder of the paper is organized as follows. Section

makes use throughout of expanding the interaction potential up !l describes the formulation of the equations resulting from the
to second order, the role of the couplings in the Hamiltonian duadratic expansion, for all degrees of freedom, in the definition

being an immediate consequence of it. This well-known of the IRC. Section Ill describes the algorithmic i.mplementation.

technique has been used in other contexts as the basis for the€ction IV presents some resuilts of the application of the present

formulation of full dynamical method§ and has proven dynamical model, and section V concludes.

effective for alleviating the computational effort, while being

reasonably accurate. Actually, the original RPH method consid-

ers expanding the potential up to quadratic terfos all Before considering an actual molecular system, it is useful

coordinates but onehe arc lengthd) being left out from this to treat the reaction path formalism using the full set of internal

expansion, because it is considered the associated motion to beoordinates, M, rather than the 3N Cartesian coordinates of the

far from harmonic (the original MHA work derived its formula- N atoms. The set of internal coordinates isM8N — 6, (M =

tion from the treatment of floppy-like modes). Then, one 3N — 5 for diatomic molecules). It is well known that the

performs a parameter-dependent §pguadratic expansion. The ~ reaction path is obtained by starting at a saddle point and

treatment is unified a posteriori by including the effect of the performing calculations at a sequence of nuclear positions. This

reaction coordinate in the coupling matrix eleméhts. sequence is determined by following the normalized gradient
The present work originated from the wish to treat the VECtOr, in mass-weighted internal coordinaftes,

dynamics of very large molecular systems, for which direct 2

dynamics methods appear to be more affordable (relatively Gam%): %’: Gy 9(Ady(9)) _

speaking), when implemented within the RPH context. Our S S T

starting point has been to consider the quadratic expansion for \/[g(AqO(s))] Goa(Adg(s))

II. Derivation of the Reaction Path Hamiltonian

all degrees of freedom, i.e., including in it the reaction 9(Ady(9)) B
coordinates. However, the dynamically unique, central role T
played bys requires a specific formulation for the expansion. \/ [9(AQ,(s)] 9(Adq(s))

It has been found that, starting from the definition of the MEP

more precisely, the definition of the intrinsic reaction coordinate

(IRC)—and performing a first-order expansion of the gradient,

it is possible to establish a relationship betweseand the

complete set of internal coordinates. More important, this

relationship leads to a constraint that, ultimately, translates into

a dynamical equation fos and, in the classical Hamiltonian

formulation, its conjugate momentupa The appealing feature

of the approach is that this equation of motioraizalytically

solvable, inside the validity range of the quadratic expansion,

provided that the structural information (gradients and Hessians) _ _ T

is available at each required value of the reaction coordinate. 9= 90 ={%(: - gu(S} )

A main result is tha_t, at _flrst instance, the coqpllngs are not The variation of the potential energy surfaceg)/(along the

!req_uwed for the squn_ons, ie., the normal mode tw_ne dependence|rc Jine is then found to be

inside each quadratic expansion of the potential. Then, each

quadratic solution couples .to the next t.hrough the eigenvectors dv(q) [dAg, F

overlap between consecutive quadratic expansions, or further ds g ds g9 3)

when recovering the Cartesian coordinate time dependence. One

thus has analytic solutions that are stepwise corrected to getshowing that the energy surface is parametrically dependent on

the final, continuous trajectories. The computational performance the arc lengths. The calculation of the gradient vector and the

of the present RPH formulation is, consequently, enhanced, sinceHessian matrix is nowadays relatively easy in any quantum

obtaining the time dependence for each variable is a matter of chemistry calculation. Consequently, it has been proposed that

just some functional plus some overlap evaluations. eq 1 be integrated by successive local quadratic approximation
The issue is then the global accuracy of the quadratic algorithms!4~” Sun and Ruedenbérg®noted that the solution

expansion for the reaction coordinate, e.g., how the neglect of to

the (seemingly important) anharmonicity terms really affect the dAgy(U)

final results. The algorithm actually implemented uses the u oY/ _

standard procedure of defining the step size by monitoring the du 9(Ado(u)) )

difference between the quadratic and the true potentials. Previous ] ] )

experience with this kind of approach tells that a reasonable 9ives a IRC path identical to that obtained from eq 1 and that

accuracy might be expected for large molecular sysfeftss eq 4 can be solved exactly when the potential energy is a

should be the case for the present application because, as onguadratic function of the coordinates. _ _

increases the complexity of the molecular system, the easier it 1€ connection between eq 1 and eq 4 is established by

will be to find important departures from the harmonic behavior, d€fining the parameter

for degrees of freedom other than the reaction coordinate, so s 1

that the anharmonicity of the latter should become less particular. u(s) = ex;{ fSO—ds’] (5a)

In other words, one is forced, anyway, to define a small step «/T

where Ao = g — Qo and g are M-dimensional internal
coordinates and gradient vector, respectiv€y.is Wilson’s
G-matrixt? of dimension Mx M, evaluated atjo. The Ago and

g vectors denote the corresponding mass-weighted internal
coordinates and gradient, respectively. The first-order differential
eq 1 defines the tangent of the IR® internal coordinates,
whereas the parametsmplays the role of an arc length. The
above IRC is a parametrically defined curve in the M-
dimensional mass-weighted internal coordinate siface
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then Ju] = ft:L(u, %; t) dt (13)

Lo = 4s (5b)

is that satisfying the well-known Euleitagrange differential
equationt® which in this case takes the form

Now the mass-weighted potential energy gradient vector is 5
expressed in the local quadratic approximation du —1(du)2TrEO - +u=0 (14)

dt? dt M
9(Adg) = o+ FeAdg (6)

where Tr stands for a matrix trace. The IRC reaction path
where go and Fo are, respectively, the gradient vector and Hamiltonian is derived in the usual way,
Hessian matrix, in mass-weighted internal coordinates, repre-
sented atfj = go. Equating egs 4 and 6 and integrating the
resulting equation leads to a piecewise quadratic approximation
for the IRC path. The locally quadratic IRC curgy), is then

du du
H(u. Py ) = pyg; — Lun G 1 (15)

where the conjugate momentum, is given by

u) =gy~ (I — U)F, ™ 7
q(u) =d, — ( )Fo % (7) . oL _ gTuz(EO*')g du 16
wherel is the unit matrix and theF matrix is defined as ! 3(%) 0 Odt
dt
Fo_ fOs 1y T
U= V(U033 Vo ®) Now using equations12, 15, and 16 we obtain the Hamilton
The orthogonal matrix of eigenvectoldy = (V| ... [v3,), and function
the eigenvalue§f,®} ;= are obtained from the diagonalization 2
of the mass-weighted Hessian matrixVo'FoVo = H(u, p,; t) = 1 Py 4 %ggufopalufogo + W,
{foi 5".}_ 2 gguz(fo—ngo =
Equation 7 is then the constraint that makes possible relating a7)

the set of M internal coordinates to the defined varialle o _
Substituting it into the local quadratic approximation of the  Note that no explicit representation of the angular momentum
potential energy surface aroumg, we obtain the analytical IS considered in the present Hamiltonian. Actually, for large

IRC curve. This expression is Consequently, the rotational periods will hardly match with those

corresponding to vibration, so that the rotatianbration

_ 11 F—1 F coupling is expected to be small. In these cases, approximate,
V(W) =W + EQOU_OEO U0y ©) separable methods should be reasonable, inexpensive alternatives
to account for the effect of rotation. Finally, note that by
where applying Hamilton’s equations of motion to eq 17, one may
recover, as expected, eq 14.
W, =V, — %QgEggo (10) It proves convenient, for the integration of the differential
eq 14, to use the transformatian= exp(). The resulting
Vo being the potential energy gt= qo. equation is
As u is now the generalized coordinate, by using its time 2 2 \2(Tr(Fy— 1)
evolution it is possible to evaluate the kinetic energy of a dw (ﬂ) (L+ 1) +1=0 (18)
molecular system moving along the quadratic IRC path. In other dt? dt? M

words, we obtain the kinetic energy of a system moving along )
the curve defined in eq 4, constrained by eq 7, as a function of Now we apply the transformatiop = dr/dt to the above

du/dt equation, obtaining
(@ u) _ 1.(dA90)T(dA90) _ ;(dAgo @)T(dAgo @) _ ‘;—X + A2 +1=0 (19)
d) T2\ dt )\t ) T2\ du i) \du o t
1 T 2Fo ) (@)2 11) whereA = (Tr(Fo — 1)/M + 1). Equation 19 is a second-order
290 % dt Bernoulli's differential equation. Its solution distinguishes three
cases:
Equation 7 has been used in the derivation of eq 11. Using
both the kinetic energy given in eq 11 and the potential energy (1) if A> 0 thenu(t) = [Czcos(t«/zx +C)l LA (20a)

given in eq 9, we can build the Lagrange functiaf, du/dt;
t),1° corresponding to the same motion of the molecular system .., . _ ~1A
along the quadratic IRC path, (2) if A < 0thenu(t) = [Ccosh(-tv Al + C))] (20b)

2 . 1
L(u, du/dt; t) = T(du/dt, u) — V(u) = %gg(uﬂfr')(%) _ (3) if A= 0 thenu(t) = exp{— Et2 + Cit+C, (20c)
uEOEgluE‘))go -W, (12) Finally, we note that the present problem is similar to the

“brachistochrone problent? because in the present case the

The curveu = u(t) that makes stationary the functional molecular system falls from the transition state to a minimum,
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Figure 1. Schematic picture of the unimolecular rearrangement process studied in the present work, the 1,2 hydrogen migration between the
(corresponding) carbene and ethyne oxide. Data in square brackets stand for dihedral angles, in their usual notation.

either reactant or product, on the potential energy surface, butThis process is carried out until the reactant and product minima

is restricted to move along the IRC curve. are reached.
_ The initiation step is performed at the transition state, where
1. Algorithm the gradient vector is equal to the null vector and, consequently,

In this section we present a practical way to integrate the € basic eq 1 cannot be used strictly. However, it is possible
IRC path Hamiltonian, from the transition state to either reactant t© Show, by application of L'Hpital’s rule, that the IRC curve
or product regions, by successive quadratic approximations. WeC0NVerges to th? transition vectofss, at this point.® In other
assume that a transition state and the reactants and product¥0rds.go/(go'do)>— visat a first-order saddle point. By taking
minima have been located using standard metRbitie gradient  thiS result into account, eq 23 is reduced tpdi = v du/dt
vector and the Hessian matrix being available as well at any (With u = 1). Consequently, onlyuddt is required as input.
desired point along the IRC path. The Hessian matrix and the ~Finally, we note that in the region where thg matrix is
gradient vector are computed and transformed to internal N€gative definite, eq 7 is not defined properly. In this case one
coordinates, so as to build the present quadratic approximation.Should use the corresponding quadratic image function, so that
The most expensive part of this algorithm is the evaluation of the stability for the basic eq 7 is recoveréd.
the Hessian matrix. Nevertheless, it is possible to update the
Hessian matrix using the Murtagi$argent-Powell formulagz-24
rather than to compute it fully, even though this feature is not  The application of the present RPH implementation is
tested at present. illustrated here by considering a unimolecular rearrangement

A brief description of the algorithm may be given as follows. process, the 1,2 hydrogen migration between the (corresponding)

At a point of the IRCgo, compute the energy, gradient vector, carbene and ethyne oxi@®2° A scheme for this process is
and Hessian matrix. Both the gradient vector and the Hessianshown in Figure 1, where the equilibrium geometry for the

matrix are then transformed to internal coordinates, denoted bytransition state is shown explicitly.
go andFo, respectively. Compute also tii& matrix. Using eq The application of the present method to the above uni-
7, find a value ofu such that the next inequality is satisfied: molecular process required first testing that the trust radius
T 72 chosen for each quadratic step and the first-order expansion of
[(Ado(W) (Age(u))]™“ = R (21) the gradient lead to a converged description of the reaction path
dynamics. Results of the final converged numerical parameters
whereR is the “trust radius” that characterizes the trust region, zre shown in Table 1. Quite remarkably, only ca. 20 steps for
i.e., the validity region for the current quadratic model. each of the transition state (TS)-to-products or the TS-to-
Employing the corresponding eq 20, we compute the ime  reactants IRC branches have been necessary for that converged
for the given value of, that the system spends inside the current gescription. This convergence was tested, as usual, by consider-
paraboloid. Note that at the beginning of each quadratic model, jng trust radius one-half of the original ones and then checking

IV. Results and Discussion

u(0) = 1 and di(0)/ct takes the value that the final results were invariant.
d The present algorithm has been implemented in a computer
gg&’ code that has been interfaced to the MOPAC quantum chemistry
dU_(O) _Tdt (22) package. The PES IRC points, plus the related gradient vectors
dt gggo and Hessian matrices, have been computed at the MINDIEF

level3° The present system has been chosen, as stated, for

Equation 22 is obtained by differentiation of eq 7 with respect illustrative purposes. Consequently, the accuracy of the PES is
to time and imposingi(0) = 1. Using bothu(0) = 1 and the not our main goal in the present work. Rather, the present system
above di(0)/dt, we compute th€; andC, constants appearing has been chosen because itis a truly multidimensional (9-mode)
in eq 20. The trust radiuf, is adjusted at each step according Pproblem with a PES that exhibits remarkable features. Figure 2
to the technique proposed by Culot etflwhich has been used ~ shows the potential profile for the above rearrangement process

several times in optimizati@A25and dynamic algorithm The as a function of the IRC arc length In the figure, negative
velocity for each internal coordinate is then evaluated according values stand for the reactants region, whereas positive values
to the equation correspond to products. This will be the case for the remaining
figures, unless explicitly stated otherwise. The following IRC
dq _ ot du (23) displays a barrier of ca. 65 kcal/mol, the rearrangement process
dt godt being slightly exothermic by ca. 7 kcal/mol. According to the
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TABLE 1: Numerical Parameters and Behavior of the 4.0
Present Algorithm, as Applied to the Rearrangement of
Ethyne Oxide?

gradient
step R ue S s tf t9 crh norm 2.0 —

0.500 1.649 0.500 0.500 0.361 0.361 0.858 0.004
0.089 2.163 0.178 0.678 0.105 0.466 1.045 91.306 7
0.084 1.938 0.168 0.845 0.098 0.564 1.040 101.613
0.119 2.366 0.237 1.082 0.138 0.702 1.035 109.358

0.0 —

sfau.)

O©CoOoO~NOOO~WNEFO
o
N
w
~
w
w
[y
w

0.168 2.994 0.335 1.417 0.190 0.892 1.019 118.054 —

. 0.478 1.896 0.229 1.121 0.918 129.813 i

0.300 0.313 0.309 2.204 0.201 1.322 0.997 163.196

0.300 0.120 0.107 2.311 0.204 1.525 1.023 120.275

0.300 0.064 0.081 2.392 0.182 1.707 1.009 93.101 207

0.300 0.028 0.065 2.457 0.156 1.864 0.999 68.282 "
10 0.300 0.007 0.049 2.506 0.131 1.995 0.998 47.055 .
11 0.300 0.000 0.034 2.539 0.101 2.096 1.001 29.940
12 0.200 0.000 0.021 2.560 0.060 2.155 0.997 16.411 40— ‘ ‘ ‘ ——
13 0.084 0.002 0.014 2.575 0.031 2.186 0.993  8.946 000 008 008 ot e
14 0.079 0.000 0.009 2.583 0.023 2.209 0.991  5.908 ' ‘ ' : :

i
15 0.050 0.000 0.006 2.590 0.014 2.223 0.990 3.395 H®)

16 0.021 0.001 0.003 2.593 0.007 2.230 1.000 1:831 Figure 3. Time dependence of the IRC arc lengihas it is obtained
17 0.017 0.000 0.002 2.595 0.005 2.235 1.000 1.160 from the solution of eq 14.

18 0.010 0.000 0.001 2.596 0.003 2.238 1.000 0.673 . . . .

19 0.005 0.000 0.001 2.597 0.002 2.239 1.000 0.388 reflect the existence of bifurcation points along the IRC path.

. . The first one, | in the r nts region, is foun n
a Parameters correspond to those characterizing the path obtained e first one, located in the reactants region, is found at a

starting at the transition state (TS) and proceeding downhill toward energy of 108'51_ kca_l/mol, and its geom_et_ry IS S“gh'_[ly distorted
the product minimum. Similar data characterize the TS-reactants path. from that shown in Figure 1 for the transition state, in the sense

b R = trust radius, in bohr¢ Theu value is calculated according to eq  that Hy is closer to G (the C-H distance is now 1.245 A). The
21.9s = arc length for each step. It is evaluated by integration of eq second is located well in the products region, having an energy
5b, and given in ami bohr.® The cumulative arc length, in artft of 111.61 kcal/mol and displaying a geometry close to that
bohr.'The time step, in au, evaluated according to eq ¢Zhe shown in Figure 1 for the products configuration. The difficulties

cumulative time step, in all.The validity of the current quadratic model . : : :
is evaluated using the expression=eAE@/(V(U) — Vo), whereV(u) of the IRC following algorithms in such PES regions are well

is given in eq 9 and\E®@ is the real quadratic variation of the potential KNown. One could consider initially a system free of such
energy.' The current gradient norm, in kcal mélA-1 — kcal mol? features, for testing purposes. However, such difficulties in
radt. exploring PESs are more likely as the molecular system
considered becomes more involved. Furthermore, the resulting
dynamics is found to be not particularly affected, from the
i methodological point of view, by the fact that PES regions
exhibiting bifurcation points are being sampled (see discussion
below). Finally, the RPH philosophy is especially suited for
i large molecular systems, given the IRC following constraint,
for the arc length coordinate, involved in its formulation. All
of these reasons prompted us to consider such an involved
system as a good candidate to test the present methodology.
The primary quantity obtained from the application of the
80.0 — present RPH formulation is the arc length time dependence, i.e.,
the solution of eq 19 and therefore of eq 14. It provides
information on the dynamics of a point particle restricted to
60.0 — follow the IRC line. Thes time dependence thus obtained is
\ shown in Figure 3. As it can be seen, the highest accelerations
roughly correlate to the strongest variations of the potential in
40.0 , ‘ ‘ ‘ [ \ Figure 2. However, the curvature effects and normal mode
-4.0 20 0.0 2.0 40 coupling, included in eq 14 through the gradient andAlfiactor,
s@au) cause thes time dependence to be far from simple. Thus, even
Figure 2. Potential energy profile along the IRC arc lengtiNegative though the potential is strongly varying across the saddle point
svalues correspond to reactant configurations, whereas pasitalaes (s= 0), the velocity along is lower owing to the influence of

stand for products. Zero afcorresponds to the saddle point config- yhq glowly varying normal-mode frequencies around the saddle
uration. The maximum of the potential curve shows an apparent

derivative discontinuity. It originates in the fact that the IRC equation p0|r)t region, as it is shown next. .

is not defined as = 0 (see discussion following eq 23). Consequently, Figure 4 shows the normal mode eigenvalue dependence on

the inner region corresponding to the first trust radius is not explored the reaction coordinats. The connection between adjacent

and, to avoid a discontinuous trace in the plot, just three potential values eigenvalues has been done according to the maximum overlap

are calculated and further connected by straight lines. criterium, i.e., following a diabatic approach for the normal-

mode frequency change (conversely, connecting the eigenvalues

barrier height value, significant mode excitation is to be expected by a strict energy ordering alorgicorresponds to an adiabatic

for trajectories overcoming the potential barrier. following, so that the crossings should be changed to a set of
The IRC profile shows, in addition, two blips after the TS, avoided crossings). The present system has nine normal modes,

at abouts = 1.1, as well as a shoulder at abouts-2. They two of them lying much higher in energy both in the reactant

140.0 —

120.0 —

100.0 —

V (Kcal/mol)
L
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Figure 4. Normal mode eigenvalue dependencesoliit is obtained
from the Hessian diagonalization, corresponding to each of the quadratic
expansions of the potential, and further connecting diabatically adjacent
eigenvalues, according to the maximum overlap of the corresponding
eigenvectors.
and product configurations. Normal modes 1 and 8 (the
numbering being dictated by the energy ordering in the reactant
configuration) are stabilized substantially when approaching the
saddle point, whereas the remaining modes are much less
affected. Their frequencies become higher again when reaching
the product region. It then appears that both reactant modes 1
and 8 are those more affected by the rearrangement proces:
and thus those having a major role in the detailed reaction
mechanism. Abrupt changes in some of the normal-mode
frequencies are observed atswalue of aproximately 1.1. They
arise as a consequence of the first bifurcation point described
above, i.e., an abrupt change in the potential features as the
IRC is followed. Stability of the dynamical solutions was
carefully tested across this PES region. The step size was
reduced around that region, the final results being again Figure 5. Normal mode vectors associated with the lowermost
invariant. We then conclude that, despite the sudden change infrequency of Figure 4, for (a) reactants, (b) transition state, and (c)
the characteristics of the associated motion across the bifurcationProducts configurations, respectively.
region, the present methodology is able to deal with it. The
problem of going across these regions is thus limited to the for the TS configuration, the Hvibration takes place on a line
IRC following algorithms, an issue that is not checked at present. perpendicular to the £ C,—0O;3 plane and below it. Its lower

At this point, a more complete picture of the reaction mode frequency, compared to both reactants and products, is seen
should be gained from the analysis of the whole set of normal clearly, thanks to the partial bending character of this H
mode dynamics. The first issue is to provide some rationale for vibration, if considered with respect to the-&H, and G—H,
the normal-mode frequency change en The lowermost  bonds. Mode 9 corresponds again to essentially-#iGtretch.

frequency in Figure 4 corresponds to an out-of-plae & — However, its frequency is much less affected by the IRC
C bend (the atom numbering is given in Figure 1, whereas the potential profile, since it involves theg-atom, which clearly
reference plane is that defined by,-@C,—0Os), which is acts as a “spectator” during the rearrangement process. Finally,

common to the reactants, products, and TS configurations. Inhe remaining normal modes 2) are less affected by the
the reactants configurationldescribes also a bending motion,  ytential profile because they correspond mainly to “breathing”

with respect to &€ and G, being in phase with b In the modes of the & C,—0j3 frame, which is again almost unaltered
products configuration, conversely, Hends out of phase with by the unimolecular rearrangement.

Hs. Finally, in the TS configuration Hdescribes a vibration, . .
between the Cand G atoms and parallel to the;&C, bond The above normal-mode features are driven by the potential
on a plane parallel to that defined by-6C,—Os and located ~ €nergy, in particular by its change on the whole set of normal
below it. The frequency decrease is then explained in terms of Mode coordinates, as one advances along the arc length

the weakening of the £-H, and G—H, bonds, as one moves ~ Provides a structural description of the rearrangement process
from the minima toward the TS. Figure 5 depicts the corre- Plus some indications on how the vibrational frequencies
sponding normal mode vectors for reactants, transition state,participate in that process. However, the description of the
and products normal mode 1. A similar analysis can be reaction mechanism is not complete without explaining how
performed for mode 8. It corresponds essentially to anCH the energy stored in the nuclear degrees of freedom floats among
stretch, the hydrogen beingsHor products and TS, whereas them during the course of the reaction. An indication on how
both H, and H; describe stretching vibrations for reactants. As this energy flow among modes takes place is given in Figure
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0.20 act as simple energy mediators because the process further
advances with Qcapturing again a major part of the available
kinetic energy. It is interesting to emphasize that the above
energy transfer does not take place randomly among the
“breathing” C-C—0O modes, but rather it describes a well-
defined pattern, as stated, of successive excitations and de-
excitations. Just before the TS, most of the kinetic energy is
converted into electronic potential energy, by virtue of the uphill
advance of the isomerization process.

As the TS is overcome toward the product minimum, Q
acquires again almost all of the kinetic energy released by the
potential. During this energy acquisition, a lowly effective
energy transfer between;@nd Q, Q, takes place, which is
quickly returned to @ At about 0.14 fs, however, a nearly
quantitative, stepwise transfer takes place, by which #$)€)%)
and finally @ are successively excited and deexcited, except

for the latter, which is the vibration mode mostly excited at the
0.00 0.01 0.02 0.03 0.04 0.05 . . . .. . .
t(fs) end of the isomerization process. This indicates an important
0.20 — specificity in the process here described. Overall, both the
reactants-to-TS and TS-to-products motions displayH®end
1 (b) - to C—C—0 breathing mode transfer, taking place at intermediate
times for the former and at final times for the latter.

The present results are, of course, dependent on the initial
conditions. In the present method they are determined, as stated,
at the transition state. Further knowledge of this process requires
considering a representative set of initial conditions, i.e., a proper
distribution in phase space, so as to get typical kinetic quantities
such as rate constants. This extended analysis, along with further
extensions to angular momentum based formulations, as well
as semiclassical and quantum mechanical versions, is left for
future work.

0.16 —

Kinetic Energy (a.u.)
L

0.04 —

Kinetic Energy (a.u.)

V. Summary and Conclusions

An implementation of the RPH Hamiltonian of Miller, Handy,
ol o012 o013 0.14 0.15 0.16 Adams, based on an explicit relation between the set of internal
t(fs) coordinates and the IRC arc length, has been presented. This
Figure 6. Kinetic energy stored in each normal mode, as a function €lation originates from a first order expansion of the gradient.
of time, for (a) reactant and (b) product regions. The splitting of the The result is that both the kinetic and potential energy functions
overall time dependence into two parts has been done in order to easeare dependent on the arc length distance plus the gradient and
the analysis of the initial and final stages, where most of the Hessjan along it. The ultimate consequence is that the unique
intramolecular mode couplings take place. dynamic equation for the complete system can be solved
6, where the kinetic energy stored in each normal mode is efficiently in two stages. First, the arc length time dependence,
plotted as a function of time. This quantity is easily available S(t), is obtained from a second-order Bernouilli-type equation,
(analytical inside each quadratic sector) from the main equationshaving the gradient vectors and Hessian matrices along the arc
of the present model, this being one of its advantages. length as input data. This equation is solved analytically inside
The overall shape of each trace in Figure 6 tells that potential the validity range of quadratic expansions of the potential,
energy captures most of the initial and final kinetic energy centered on successive points of the reaction coordinate. The
around the TS region, as required by total energy conservation.whole time dependence is afterward recovered, stepwisely, from
Actually, the “initial” conditions necessary for solving the the continuity conditions between adjacent quadratic expansions.
dynamical equations are determined, in the present method, afThe second stage leads to the full normal mode time dependence,
the TS. They have been presently chosen as following an starting froms(t), the gradients, and Hessians for each quadratic
exponentially decreasing distribution of kinetic energies among expansion, and the overlaps between adjacent quadratic expan-
the whole set of normal modes according to their normal-mode sion eigenvector matrixes.
frequency as = 0 (the squared modulus taken for the imaginary ~ The result is a computationally efficient ab initio direct
frequency). The way the kinetic energy changes before and afterdynamics method, thanks to a previous assembling of the
the TS, the quantity of concern here, is far from simple, dynamical code with an adequate quantum chemistry package.
providing insight on the energy transfer mechanism, which The possibilities of the present method have been illustrated,
otherwise remains unnoticed from inspection of just the IRC in this work, studying the 1,2 hydrogen migration between the
features. Thus, the isomerization process starts from an initial (corresponding) carbene and ethyne oxide, a 9-normal mode
state that concentrates almost all kinetic energy on the isomer-problem. Especially appealing is the straightforward analysis
ization mode, @ pointing out an important selectivity. As the emerging from the simultaneous use of the frequency depend-
process goes on, part of this energy flow describes a kind of ence on the reaction coordinate and the time evolution of the
“trajectory”, going through @ Qs, Qs4, Qs, and Q, by means kinetic energy captured by each normal mode. In particular,
of successive excitations and deexcitacions of these modes. Theyhe present system shows both an important isomerization
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selectivity and specificity, since it concentrates most of the initial Kobrak, M. N.; Xu, Ch.; Hammes-Schiffer, $. Phys. Chem. 200Q 104,
and final energy in the isomerization mode, @nd a breathing 8958

. " (6) Nguyen, K. A.; Jackels, C. F.; Truhlar, D. &.Chem. Physl996
mode, Q, respectively. In addition, some of the frame modes 144 6491 and references therein. Also, The reaction path in chemistry:

act as necessary energy mediators during the time evolution incurrent approaches and perspectivesimlerstanding chemical reaetty;
the reactants region. And, furthermore, the process ends up withHeidrich, D., Ed.; Kluwer: Dordrecht, 1995; Vol. 16.

a nearly quantitative, stepwise vibrational energy transfer ~ (7) Heller, E. JJ. Chem. Phys1975 62, 1544.
b d h h diati fth | d (8) Millam, J. M.; Bakken, V.; Chen, W.; Hase, W. L.; Schlegel, H.
etween Qand @Q, through mediation of the £hormal mode. B. J. Chem. Phys1999 111 3800.

The method is presently restricted to the strictly classical (9) Fukui, K. Acc. Chem. Re<981, 14, 363.
problem, which might be of use for making more efficient (10) Gonzalez, C.; Schlegel, H. B. Phys. Chem199Q 94, 5523.
dynamics studies of very large molecular systems. Further (11) Quapp, W.; Heidrich, DTheor. Chim. Actdl984 66, 245.

; ; ; ; ; ; (12) Wilson, E. B.; Decius, G. C.; Cross, P. Kolecular Vibrations
improvements may consist of developing suitable semiclassical McGraw-Hill: London, 1955,

or quantum mechanical versions of it, as well as its use for rate  (13) sun, J. Q.; Ruedenberg, & Chem. Phys1993 98, 9707.
constant calculations and related quantities. A major reason for  (14) McKelvey, J. M.; Hamilton, J. FJ. Chem. Phys1984 80, 579.
putting some effort in this method is that the use of a RPH-  (15) Page, M.; Mclver, J. WJ. Chem. Phys1988 88, 922.

type coordinate system appears well adapted, in principle, for ~ (16) Ischtwan, J.; Collins, M. AJ. Chem. Phys1988 89, 2881.

dealing with the multidimensional initial condition sampling Suﬁ?‘ 8‘) %‘a’;'d‘;n%grgug_dgﬂté%?’F‘,';gf&% ggyé%g‘?‘(%?éf?j%)l.

problem, present when these latter quantities are required. All Ruedenberg, K.; Atchity, G. JJ. Chem. Phys1993 99, 5276. (d)
of these possibilities are being actively pursued in our laboratory. Ruedenberg, K.; Sun, J. Q. Chem. Phys1994 100, 6101.
(18) Fletcher, RPractical Methods of OptimizatioiWiley: New York,

. . 1987.
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