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The classical reaction path Hamiltonian formulation of Miller, Handy, and Adams is reformulated using a
linear expansion of the gradient in internal coordinates. It leads to a correspondence between the arc length,
s, along the intrinsic reaction coordinate, and the whole set of internal coordinates and, furthermore, to a
dynamical equation fors, a second-order Bernoulli-type equation, which is analytically solvable inside the
validity range of the quadratic expansion of the potential. Therefore, by virtue of the above correspondence,
the time dependence of the whole set of internal coordinates is easily recovered, by means of a few functional
and overlap evaluations. It thus enhances the computational performance of the overall direct dynamics method.
The unimolecular 1,2 hydrogen migration, between the (corresponding) carbene and ethyne oxide, is considered
as example for illustrative purposes.

I. Introduction

Much progress has been made recently on accurate theoretical
treatments of the dynamics of molecular systems.1 Powerful
classical, semiclassical, and quantum mechanical techniques,
combined with the availability of impressive computational
resources, have led to a number of interesting applications. These
range from essentially exact treatments of triatomic systems to
approximate, but fairly accurate, studies of large polyatomic
molecules, including processes such as electronic nonadiabatic
transitions, reactions at surfaces, solvent effects, cluster re-
arrangements, etc.1

In practical terms, though, two main difficulties still arise
when performing such ab initio studies. The first one is the
computation of the potential energy surface, which has to be,
frequently, fitted to an analytical function. As the dimensionality
of the system increases, so does, exponentially, the number of
quantum chemistry calculations necessary to cover the config-
uration space. Also involved is the fit to the analytical function.
The second difficulty, which bears a common origin with the
first one, is the exponential increase in computational effort
needed to explore the nuclear dynamics of these increasingly
complex systems. The previously quoted advances have certainly
reduced the overall computational effort, yet the exponential
growth of it still persists.

As a consequence, the specific search for approximate yet
accurate methods for exploring the structure-plus-dynamics
molecular problem is remarkably intense. An appealing idea,
which intelligently synthesized some interesting previous ef-
forts,2 was set forth by Miller, Handy, Adams in 1980,3 when
the reaction path Hamiltonian (RPH) was proposed. It exploits
the fact that, in the course of a rearrangement, a path is described
in going from reactants to products that is sufficiently close to
the minimum energy path (MEP). Therefore, some kind of
“guidance” exists and just a given portion of configuration space

is preferentially sampled. This combines with the fact that
efficient algorithms were developed for such MEP following
in standard quantum chemistry calculations. The result is that
the number of structure calculations is reduced to that corre-
sponding to the MEP, plus a normal-mode analysis performed
at each relevant point along it.

The RPH ideas were consistently completed by formulating
the Hamiltonian for the nuclear motion in terms of thereaction
path coordinate system.2,3 The issue of developing suitable
coordinate systems for the description of dynamical problems
is ubiquitous in molecular science.1 It became especially relevant
for treating chemical reactions, because, usually, a rearrangement
process renders inefficient an important class of the most
common coordinate systems, e.g. those tied to one of the
arrangements. The RPH formulation can thus be viewed as an
effort along this line, that directly accounts for the fragment
reorganization leading to chemical reaction. The RPH is then
expressed in terms of an arc length, along the MEP, plus 3N-
7 normal mode vibrational coordinates orthogonal to it, where
N is the number of atoms.

Central to the final RPH expression are the “couplings”, i.e.,
matrix elements that are ultimately responsible for the energy
transfer between each degree of freedom.3,4 In any other
formulation, the energy transfer taking place among degrees of
freedom, thanks to the PES topography, is actually “hidden” in
its usually obscure dependence on each coordinate. Conversely,
the RPH couplings show these transfers more explicitly, thus
reflecting the importance of the reaction path curvature, as well
as any change in the vibrational mode features, as one advances
along the reaction coordinate. Overall, one obtains a chemically
sound way of incorporating the dynamics in the description of
a reaction mechanism. In addition, with the use of a RPH, one
may expect that the essential items of a reactive process are
taken into account, whereas the less essential parts may be
treated accurately by either factoring them out or including them
by means of approximate methods. Actually, both the description
of structural features and the development of more or less
approximate dynamical theories, under the reaction path phi-
losophy, have been actively pursued by a number of workers.5

Especially interesting have been the efforts in recasting the
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5022 J. Phys. Chem. A2001,105,5022-5029

10.1021/jp003793k CCC: $20.00 © 2001 American Chemical Society
Published on Web 05/01/2001



transition state theory within the context of the reaction path
Hamiltonian.6

The Miller, Handy, Adams (MHA) dynamical formulation
makes use throughout of expanding the interaction potential up
to second order, the role of the couplings in the Hamiltonian
being an immediate consequence of it. This well-known
technique has been used in other contexts as the basis for the
formulation of full dynamical methods7,8 and has proven
effective for alleviating the computational effort, while being
reasonably accurate. Actually, the original RPH method consid-
ers expanding the potential up to quadratic termsfor all
coordinates but one, the arc length (s) being left out from this
expansion, because it is considered the associated motion to be
far from harmonic (the original MHA work derived its formula-
tion from the treatment of floppy-like modes). Then, one
performs a parameter-dependent (ons) quadratic expansion. The
treatment is unified a posteriori by including the effect of the
reaction coordinate in the coupling matrix elements.3

The present work originated from the wish to treat the
dynamics of very large molecular systems, for which direct
dynamics methods appear to be more affordable (relatively
speaking), when implemented within the RPH context. Our
starting point has been to consider the quadratic expansion for
all degrees of freedom, i.e., including in it the reaction
coordinates. However, the dynamically unique, central role
played bys requires a specific formulation for the expansion.
It has been found that, starting from the definition of the MEP-
more precisely, the definition of the intrinsic reaction coordinate
(IRC)-and performing a first-order expansion of the gradient,
it is possible to establish a relationship betweens and the
complete set of internal coordinates. More important, this
relationship leads to a constraint that, ultimately, translates into
a dynamical equation fors and, in the classical Hamiltonian
formulation, its conjugate momentumps. The appealing feature
of the approach is that this equation of motion isanalytically
solVable, inside the validity range of the quadratic expansion,
provided that the structural information (gradients and Hessians)
is available at each required value of the reaction coordinate.
A main result is that, at first instance, the couplings are not
required for the solutions, i.e., the normal mode time dependence
inside each quadratic expansion of the potential. Then, each
quadratic solution couples to the next through the eigenvectors
overlap between consecutive quadratic expansions, or further
when recovering the Cartesian coordinate time dependence. One
thus has analytic solutions that are stepwise corrected to get
the final, continuous trajectories. The computational performance
of the present RPH formulation is, consequently, enhanced, since
obtaining the time dependence for each variable is a matter of
just some functional plus some overlap evaluations.

The issue is then the global accuracy of the quadratic
expansion for the reaction coordinate, e.g., how the neglect of
the (seemingly important) anharmonicity terms really affect the
final results. The algorithm actually implemented uses the
standard procedure of defining the step size by monitoring the
difference between the quadratic and the true potentials. Previous
experience with this kind of approach tells that a reasonable
accuracy might be expected for large molecular systems.8 This
should be the case for the present application because, as one
increases the complexity of the molecular system, the easier it
will be to find important departures from the harmonic behavior,
for degrees of freedom other than the reaction coordinate, so
that the anharmonicity of the latter should become less particular.
In other words, one is forced, anyway, to define a small step

size to keep the validity of the quadratic expansion. The present
work intends to provide a test of this approximation.

The remainder of the paper is organized as follows. Section
II describes the formulation of the equations resulting from the
quadratic expansion, for all degrees of freedom, in the definition
of the IRC. Section III describes the algorithmic implementation.
Section IV presents some results of the application of the present
dynamical model, and section V concludes.

II. Derivation of the Reaction Path Hamiltonian

Before considering an actual molecular system, it is useful
to treat the reaction path formalism using the full set of internal
coordinates, M, rather than the 3N Cartesian coordinates of the
N atoms. The set of internal coordinates is M) 3N - 6, (M )
3N - 5 for diatomic molecules). It is well known that the
reaction path is obtained by starting at a saddle point and
performing calculations at a sequence of nuclear positions. This
sequence is determined by following the normalized gradient
vector, in mass-weighted internal coordinates,9-11

where ∆q0 ) q - q0 and g are M-dimensional internal
coordinates and gradient vector, respectively.G0 is Wilson’s
G-matrix12 of dimension M× M, evaluated atq0. The∆q0 and
g vectors denote the corresponding mass-weighted internal
coordinates and gradient, respectively. The first-order differential
eq 1 defines the tangent of the IRC9 in internal coordinates,
whereas the parameters plays the role of an arc length. The
above IRC is a parametrically defined curve in the M-
dimensional mass-weighted internal coordinate space13

The variation of the potential energy surface, V(q), along the
IRC line is then found to be

showing that the energy surface is parametrically dependent on
the arc length,s. The calculation of the gradient vector and the
Hessian matrix is nowadays relatively easy in any quantum
chemistry calculation. Consequently, it has been proposed that
eq 1 be integrated by successive local quadratic approximation
algorithms.14-17 Sun and Ruedenberg17,18noted that the solution
to

gives a IRC path identical to that obtained from eq 1 and that
eq 4 can be solved exactly when the potential energy is a
quadratic function of the coordinates.

The connection between eq 1 and eq 4 is established by
defining the parameter

G0
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d∆q0

ds
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G0
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then

Now the mass-weighted potential energy gradient vector is
expressed in the local quadratic approximation

where g0 and F0 are, respectively, the gradient vector and
Hessian matrix, in mass-weighted internal coordinates, repre-
sented atq ) q0. Equating eqs 4 and 6 and integrating the
resulting equation leads to a piecewise quadratic approximation
for the IRC path. The locally quadratic IRC curve,q(u), is then

whereI is the unit matrix and theuF matrix is defined as

The orthogonal matrix of eigenvectors,V0 ) (v1
0| ... |vM

0 ), and
the eigenvalues{fi0}i)1

M are obtained from the diagonalization
of the mass-weighted Hessian matrix,V0

TF0V0 )
{f0i δij}.

Equation 7 is then the constraint that makes possible relating
the set of M internal coordinates to the defined variableu.
Substituting it into the local quadratic approximation of the
potential energy surface aroundq0, we obtain the analytical
dependence of the potential energy onu, along the quadratic
IRC curve. This expression is

where

V0 being the potential energy atq ) q0.
As u is now the generalized coordinate, by using its time

evolution it is possible to evaluate the kinetic energy of a
molecular system moving along the quadratic IRC path. In other
words, we obtain the kinetic energy of a system moving along
the curve defined in eq 4, constrained by eq 7, as a function of
du/dt

Equation 7 has been used in the derivation of eq 11. Using
both the kinetic energy given in eq 11 and the potential energy
given in eq 9, we can build the Lagrange function,L(u, du/dt;
t),19 corresponding to the same motion of the molecular system
along the quadratic IRC path,

The curveu ) u(t) that makes stationary the functional

is that satisfying the well-known Euler-Lagrange differential
equation,19 which in this case takes the form

where Tr stands for a matrix trace. The IRC reaction path
Hamiltonian is derived in the usual way,19

where the conjugate momentum,pu, is given by

Now using equations12, 15, and 16 we obtain the Hamilton
function

Note that no explicit representation of the angular momentum
is considered in the present Hamiltonian. Actually, for large
molecular systems, the rotational constants will be small.
Consequently, the rotational periods will hardly match with those
corresponding to vibration, so that the rotation-vibration
coupling is expected to be small. In these cases, approximate,
separable methods should be reasonable, inexpensive alternatives
to account for the effect of rotation. Finally, note that by
applying Hamilton’s equations of motion to eq 17, one may
recover, as expected, eq 14.

It proves convenient, for the integration of the differential
eq 14, to use the transformationu ) exp(τ). The resulting
equation is

Now we apply the transformationø ) dτ/dt to the above
equation, obtaining

whereA ) (Tr(F0 - I )/M + 1). Equation 19 is a second-order
Bernoulli’s differential equation. Its solution distinguishes three
cases:

Finally, we note that the present problem is similar to the
“brachistochrone problem”,20 because in the present case the
molecular system falls from the transition state to a minimum,

du
u
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ds (5b)

g(∆q0) ) g0 + F0∆q0 (6)

q(u) ) q0 - (I - uF0)F0
-1g0 (7)

uF0 ) V0{uf i
0
δij}V0

T (8)

V(u) ) W0 + 1
2
g0

TuF0F0
-1uF0g0 (9)

W0 ) V0 - 1
2
g0

TF0
Tg0 (10)

T(du
dt

, u) ) 1
2(d∆q0

dt )T(d∆q0

dt ) ) 1
2(d∆q0

du
du
dt)

T(d∆q0

du
du
dt) )

1
2
g0

Tu2(F0-I )g0(du
dt)

2

(11)

L(u, du/dt; t) ) T(du/dt, u) - V(u) ) 1
2
g0

T(u2(F0-I )(du
dt )2

-

uF0F0
-1uF0)g0 - W0 (12)

J[u] ) ∫t0

t
L(u,

du
dt

; t) dt (13)

d2u

dt2
+ u-1(du

dt )2Tr(F0 - I )

M
+ u ) 0 (14)

H(u, pu; t) ) pu
du
dt

- L(u,
du
dt

; t) (15)

pu ) ∂L

∂(du
dt )

) g0
Tu2(F0-I )g0

du
dt

(16)

H(u, pu; t) ) 1
2

pu
2

g0
Tu2(F0-I )g0

+ 1
2
g0

TuF0F0
-1uF0g0 + W0

(17)

d2τ
dt2

+ (d2τ
dt2)

2(Tr(F0 - I )

M
+ 1) + 1 ) 0 (18)

dø
dt

+ Aø2 + 1 ) 0 (19)
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either reactant or product, on the potential energy surface, but
is restricted to move along the IRC curve.

III. Algorithm

In this section we present a practical way to integrate the
IRC path Hamiltonian, from the transition state to either reactant
or product regions, by successive quadratic approximations. We
assume that a transition state and the reactants and products
minima have been located using standard methods,21 the gradient
vector and the Hessian matrix being available as well at any
desired point along the IRC path. The Hessian matrix and the
gradient vector are computed and transformed to internal
coordinates, so as to build the present quadratic approximation.
The most expensive part of this algorithm is the evaluation of
the Hessian matrix. Nevertheless, it is possible to update the
Hessian matrix using the Murtagh-Sargent-Powell formula,22-24

rather than to compute it fully, even though this feature is not
tested at present.

A brief description of the algorithm may be given as follows.
At a point of the IRC,q0, compute the energy, gradient vector,
and Hessian matrix. Both the gradient vector and the Hessian
matrix are then transformed to internal coordinates, denoted by
g0 andF0, respectively. Compute also theG0 matrix. Using eq
7, find a value ofu such that the next inequality is satisfied:

whereR is the “trust radius” that characterizes the trust region,
i.e., the validity region for the current quadratic model.
Employing the corresponding eq 20, we compute the timet,
for the given value ofu, that the system spends inside the current
paraboloid. Note that at the beginning of each quadratic model,
u(0) ) 1 and du(0)/dt takes the value

Equation 22 is obtained by differentiation of eq 7 with respect
to time and imposingu(0) ) 1. Using bothu(0) ) 1 and the
above du(0)/dt, we compute theC1 andC2 constants appearing
in eq 20. The trust radius,R, is adjusted at each step according
to the technique proposed by Culot et al.,25 which has been used
several times in optimization22,25and dynamic algorithms.26 The
velocity for each internal coordinate is then evaluated according
to the equation

This process is carried out until the reactant and product minima
are reached.

The initiation step is performed at the transition state, where
the gradient vector is equal to the null vector and, consequently,
the basic eq 1 cannot be used strictly. However, it is possible
to show, by application of L’Hoˆpital’s rule, that the IRC curve
converges to the transition vector,v0

ts, at this point.15 In other
words,g0/(g0

Tg0)1/2 f v0
ts at a first-order saddle point. By taking

this result into account, eq 23 is reduced to dq/dt ) v0
ts du/dt

(with u ) 1). Consequently, only du/dt is required as input.
Finally, we note that in the region where theF0 matrix is

negative definite, eq 7 is not defined properly. In this case one
should use the corresponding quadratic image function, so that
the stability for the basic eq 7 is recovered.27

IV. Results and Discussion

The application of the present RPH implementation is
illustrated here by considering a unimolecular rearrangement
process, the 1,2 hydrogen migration between the (corresponding)
carbene and ethyne oxide.28,29 A scheme for this process is
shown in Figure 1, where the equilibrium geometry for the
transition state is shown explicitly.

The application of the present method to the above uni-
molecular process required first testing that the trust radius
chosen for each quadratic step and the first-order expansion of
the gradient lead to a converged description of the reaction path
dynamics. Results of the final converged numerical parameters
are shown in Table 1. Quite remarkably, only ca. 20 steps for
each of the transition state (TS)-to-products or the TS-to-
reactants IRC branches have been necessary for that converged
description. This convergence was tested, as usual, by consider-
ing trust radius one-half of the original ones and then checking
that the final results were invariant.

The present algorithm has been implemented in a computer
code that has been interfaced to the MOPAC quantum chemistry
package. The PES IRC points, plus the related gradient vectors
and Hessian matrices, have been computed at the MNDO-UHF
level.30 The present system has been chosen, as stated, for
illustrative purposes. Consequently, the accuracy of the PES is
not our main goal in the present work. Rather, the present system
has been chosen because it is a truly multidimensional (9-mode)
problem with a PES that exhibits remarkable features. Figure 2
shows the potential profile for the above rearrangement process
as a function of the IRC arc lengths. In the figure, negatives
values stand for the reactants region, whereas positive values
correspond to products. This will be the case for the remaining
figures, unless explicitly stated otherwise. The following IRC
displays a barrier of ca. 65 kcal/mol, the rearrangement process
being slightly exothermic by ca. 7 kcal/mol. According to the

Figure 1. Schematic picture of the unimolecular rearrangement process studied in the present work, the 1,2 hydrogen migration between the
(corresponding) carbene and ethyne oxide. Data in square brackets stand for dihedral angles, in their usual notation.

[(∆q0(u))T(∆q0(u))]1/2 e R (21)

du(0)
dt

)
g0

T
dq0

dt

g0
Tg0

(22)

dq
dt

) uF0-Ig0
du
dt

(23)
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barrier height value, significant mode excitation is to be expected
for trajectories overcoming the potential barrier.

The IRC profile shows, in addition, two blips after the TS,
at abouts ) 1.1, as well as a shoulder at about s) -2. They

reflect the existence of bifurcation points along the IRC path.
The first one, located in the reactants region, is found at an
energy of 108.51 kcal/mol, and its geometry is slightly distorted
from that shown in Figure 1 for the transition state, in the sense
that H4 is closer to C1 (the C-H distance is now 1.245 Å). The
second is located well in the products region, having an energy
of 111.61 kcal/mol and displaying a geometry close to that
shown in Figure 1 for the products configuration. The difficulties
of the IRC following algorithms in such PES regions are well
known. One could consider initially a system free of such
features, for testing purposes. However, such difficulties in
exploring PESs are more likely as the molecular system
considered becomes more involved. Furthermore, the resulting
dynamics is found to be not particularly affected, from the
methodological point of view, by the fact that PES regions
exhibiting bifurcation points are being sampled (see discussion
below). Finally, the RPH philosophy is especially suited for
large molecular systems, given the IRC following constraint,
for the arc length coordinate, involved in its formulation. All
of these reasons prompted us to consider such an involved
system as a good candidate to test the present methodology.

The primary quantity obtained from the application of the
present RPH formulation is the arc length time dependence, i.e.,
the solution of eq 19 and therefore of eq 14. It provides
information on the dynamics of a point particle restricted to
follow the IRC line. Thes time dependence thus obtained is
shown in Figure 3. As it can be seen, the highest accelerations
roughly correlate to the strongest variations of the potential in
Figure 2. However, the curvature effects and normal mode
coupling, included in eq 14 through the gradient and theA factor,
cause thes time dependence to be far from simple. Thus, even
though the potential is strongly varying across the saddle point
(s ) 0), the velocity alongs is lower owing to the influence of
the slowly varying normal-mode frequencies around the saddle
point region, as it is shown next.

Figure 4 shows the normal mode eigenvalue dependence on
the reaction coordinates. The connection between adjacent
eigenvalues has been done according to the maximum overlap
criterium, i.e., following a diabatic approach for the normal-
mode frequency change (conversely, connecting the eigenvalues
by a strict energy ordering alongs corresponds to an adiabatic
following, so that the crossings should be changed to a set of
avoided crossings). The present system has nine normal modes,
two of them lying much higher in energy both in the reactant

TABLE 1: Numerical Parameters and Behavior of the
Present Algorithm, as Applied to the Rearrangement of
Ethyne Oxidea

step Rb uc sd st
e tf ttg crh

gradient
normi

0 0.500 1.649 0.500 0.500 0.361 0.361 0.858 0.004
1 0.089 2.163 0.178 0.678 0.105 0.466 1.045 91.306
2 0.084 1.938 0.168 0.845 0.098 0.564 1.040 101.613
3 0.119 2.366 0.237 1.082 0.138 0.702 1.035 109.358
4 0.168 2.994 0.335 1.417 0.190 0.892 1.019 118.054
5 0.237 3.313 0.478 1.896 0.229 1.121 0.918 129.813
6 0.300 0.313 0.309 2.204 0.201 1.322 0.997 163.196
7 0.300 0.120 0.107 2.311 0.204 1.525 1.023 120.275
8 0.300 0.064 0.081 2.392 0.182 1.707 1.009 93.101
9 0.300 0.028 0.065 2.457 0.156 1.864 0.999 68.282

10 0.300 0.007 0.049 2.506 0.131 1.995 0.998 47.055
11 0.300 0.000 0.034 2.539 0.101 2.096 1.001 29.940
12 0.200 0.000 0.021 2.560 0.060 2.155 0.997 16.411
13 0.084 0.002 0.014 2.575 0.031 2.186 0.993 8.946
14 0.079 0.000 0.009 2.583 0.023 2.209 0.991 5.908
15 0.050 0.000 0.006 2.590 0.014 2.223 0.990 3.395
16 0.021 0.001 0.003 2.593 0.007 2.230 1.000 1.831
17 0.017 0.000 0.002 2.595 0.005 2.235 1.000 1.160
18 0.010 0.000 0.001 2.596 0.003 2.238 1.000 0.673
19 0.005 0.000 0.001 2.597 0.002 2.239 1.000 0.388

a Parameters correspond to those characterizing the path obtained
starting at the transition state (TS) and proceeding downhill toward
the product minimum. Similar data characterize the TS-reactants path.
b R ) trust radius, in bohr.c Theu value is calculated according to eq
21. d s ) arc length for each step. It is evaluated by integration of eq
5b, and given in amu1/2 bohr. e The cumulative arc length, in amu1/2

bohr. f The time step, in au, evaluated according to eq 20.g The
cumulative time step, in au.h The validity of the current quadratic model
is evaluated using the expression cr) ∆E(2)/(V(u) - V0), whereV(u)
is given in eq 9 and∆E(2) is the real quadratic variation of the potential
energy.i The current gradient norm, in kcal mol-1 Å-1 - kcal mol-1

rad-1.

Figure 2. Potential energy profile along the IRC arc lengths. Negative
svalues correspond to reactant configurations, whereas positivesvalues
stand for products. Zero ofs corresponds to the saddle point config-
uration. The maximum of the potential curve shows an apparent
derivative discontinuity. It originates in the fact that the IRC equation
is not defined ats ) 0 (see discussion following eq 23). Consequently,
the inner region corresponding to the first trust radius is not explored
and, to avoid a discontinuous trace in the plot, just three potential values
are calculated and further connected by straight lines.

Figure 3. Time dependence of the IRC arc lengths, as it is obtained
from the solution of eq 14.
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and product configurations. Normal modes 1 and 8 (the
numbering being dictated by the energy ordering in the reactant
configuration) are stabilized substantially when approaching the
saddle point, whereas the remaining modes are much less
affected. Their frequencies become higher again when reaching
the product region. It then appears that both reactant modes 1
and 8 are those more affected by the rearrangement process
and thus those having a major role in the detailed reaction
mechanism. Abrupt changes in some of the normal-mode
frequencies are observed at ansvalue of aproximately 1.1. They
arise as a consequence of the first bifurcation point described
above, i.e., an abrupt change in the potential features as the
IRC is followed. Stability of the dynamical solutions was
carefully tested across this PES region. The step size was
reduced around that region, the final results being again
invariant. We then conclude that, despite the sudden change in
the characteristics of the associated motion across the bifurcation
region, the present methodology is able to deal with it. The
problem of going across these regions is thus limited to the
IRC following algorithms, an issue that is not checked at present.

At this point, a more complete picture of the reaction mode
should be gained from the analysis of the whole set of normal
mode dynamics. The first issue is to provide some rationale for
the normal-mode frequency change ons. The lowermost
frequency in Figure 4 corresponds to an out-of-plane H5-C1-
C2 bend (the atom numbering is given in Figure 1, whereas the
reference plane is that defined by C1-C2-O3), which is
common to the reactants, products, and TS configurations. In
the reactants configuration, H4 describes also a bending motion,
with respect to C1 and C2, being in phase with H5. In the
products configuration, conversely, H4 bends out of phase with
H5. Finally, in the TS configuration H4 describes a vibration,
between the C1 and C2 atoms and parallel to the C1-C2 bond,
on a plane parallel to that defined by C1-C2-O3 and located
below it. The frequency decrease is then explained in terms of
the weakening of the C2-H4 and C1-H4 bonds, as one moves
from the minima toward the TS. Figure 5 depicts the corre-
sponding normal mode vectors for reactants, transition state,
and products normal mode 1. A similar analysis can be
performed for mode 8. It corresponds essentially to an H-C
stretch, the hydrogen being H4 for products and TS, whereas
both H4 and H5 describe stretching vibrations for reactants. As

for the TS configuration, the H4 vibration takes place on a line
perpendicular to the C1-C2-O3 plane and below it. Its lower
frequency, compared to both reactants and products, is seen
clearly, thanks to the partial bending character of this H4

vibration, if considered with respect to the C1-H4 and C2-H4

bonds. Mode 9 corresponds again to essentially a C-H stretch.
However, its frequency is much less affected by the IRC
potential profile, since it involves the H5 atom, which clearly
acts as a “spectator” during the rearrangement process. Finally,
the remaining normal modes (2-7) are less affected by the
potential profile because they correspond mainly to “breathing”
modes of the C1-C2-O3 frame, which is again almost unaltered
by the unimolecular rearrangement.

The above normal-mode features are driven by the potential
energy, in particular by its change on the whole set of normal
mode coordinates, as one advances along the arc lengths. It
provides a structural description of the rearrangement process
plus some indications on how the vibrational frequencies
participate in that process. However, the description of the
reaction mechanism is not complete without explaining how
the energy stored in the nuclear degrees of freedom floats among
them during the course of the reaction. An indication on how
this energy flow among modes takes place is given in Figure

Figure 4. Normal mode eigenvalue dependence ons. It is obtained
from the Hessian diagonalization, corresponding to each of the quadratic
expansions of the potential, and further connecting diabatically adjacent
eigenvalues, according to the maximum overlap of the corresponding
eigenvectors.

Figure 5. Normal mode vectors associated with the lowermost
frequency of Figure 4, for (a) reactants, (b) transition state, and (c)
products configurations, respectively.
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6, where the kinetic energy stored in each normal mode is
plotted as a function of time. This quantity is easily available
(analytical inside each quadratic sector) from the main equations
of the present model, this being one of its advantages.

The overall shape of each trace in Figure 6 tells that potential
energy captures most of the initial and final kinetic energy
around the TS region, as required by total energy conservation.
Actually, the “initial” conditions necessary for solving the
dynamical equations are determined, in the present method, at
the TS. They have been presently chosen as following an
exponentially decreasing distribution of kinetic energies among
the whole set of normal modes according to their normal-mode
frequency ats) 0 (the squared modulus taken for the imaginary
frequency). The way the kinetic energy changes before and after
the TS, the quantity of concern here, is far from simple,
providing insight on the energy transfer mechanism, which
otherwise remains unnoticed from inspection of just the IRC
features. Thus, the isomerization process starts from an initial
state that concentrates almost all kinetic energy on the isomer-
ization mode, Q1, pointing out an important selectivity. As the
process goes on, part of this energy flow describes a kind of
“trajectory”, going through Q5, Q3, Q4, Q6, and Q9, by means
of successive excitations and deexcitacions of these modes. They

act as simple energy mediators because the process further
advances with Q1 capturing again a major part of the available
kinetic energy. It is interesting to emphasize that the above
energy transfer does not take place randomly among the
“breathing” C-C-O modes, but rather it describes a well-
defined pattern, as stated, of successive excitations and de-
excitations. Just before the TS, most of the kinetic energy is
converted into electronic potential energy, by virtue of the uphill
advance of the isomerization process.

As the TS is overcome toward the product minimum, Q1

acquires again almost all of the kinetic energy released by the
potential. During this energy acquisition, a lowly effective
energy transfer between Q1 and Q3, Q2 takes place, which is
quickly returned to Q1. At about 0.14 fs, however, a nearly
quantitative, stepwise transfer takes place, by which the Q5, Q2,
and finally Q3 are successively excited and deexcited, except
for the latter, which is the vibration mode mostly excited at the
end of the isomerization process. This indicates an important
specificity in the process here described. Overall, both the
reactants-to-TS and TS-to-products motions display C-H bend
to C-C-O breathing mode transfer, taking place at intermediate
times for the former and at final times for the latter.

The present results are, of course, dependent on the initial
conditions. In the present method they are determined, as stated,
at the transition state. Further knowledge of this process requires
considering a representative set of initial conditions, i.e., a proper
distribution in phase space, so as to get typical kinetic quantities
such as rate constants. This extended analysis, along with further
extensions to angular momentum based formulations, as well
as semiclassical and quantum mechanical versions, is left for
future work.

V. Summary and Conclusions

An implementation of the RPH Hamiltonian of Miller, Handy,
Adams, based on an explicit relation between the set of internal
coordinates and the IRC arc length, has been presented. This
relation originates from a first order expansion of the gradient.
The result is that both the kinetic and potential energy functions
are dependent on the arc length distance plus the gradient and
Hessian along it. The ultimate consequence is that the unique
dynamic equation for the complete system can be solved
efficiently in two stages. First, the arc length time dependence,
s(t), is obtained from a second-order Bernouilli-type equation,
having the gradient vectors and Hessian matrices along the arc
length as input data. This equation is solved analytically inside
the validity range of quadratic expansions of the potential,
centered on successive points of the reaction coordinate. The
whole time dependence is afterward recovered, stepwisely, from
the continuity conditions between adjacent quadratic expansions.
The second stage leads to the full normal mode time dependence,
starting froms(t), the gradients, and Hessians for each quadratic
expansion, and the overlaps between adjacent quadratic expan-
sion eigenvector matrixes.

The result is a computationally efficient ab initio direct
dynamics method, thanks to a previous assembling of the
dynamical code with an adequate quantum chemistry package.
The possibilities of the present method have been illustrated,
in this work, studying the 1,2 hydrogen migration between the
(corresponding) carbene and ethyne oxide, a 9-normal mode
problem. Especially appealing is the straightforward analysis
emerging from the simultaneous use of the frequency depend-
ence on the reaction coordinate and the time evolution of the
kinetic energy captured by each normal mode. In particular,
the present system shows both an important isomerization

Figure 6. Kinetic energy stored in each normal mode, as a function
of time, for (a) reactant and (b) product regions. The splitting of the
overall time dependence into two parts has been done in order to ease
the analysis of the initial and final stages, where most of the
intramolecular mode couplings take place.
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selectivity and specificity, since it concentrates most of the initial
and final energy in the isomerization mode, Q1, and a breathing
mode, Q3, respectively. In addition, some of the frame modes
act as necessary energy mediators during the time evolution in
the reactants region. And, furthermore, the process ends up with
a nearly quantitative, stepwise vibrational energy transfer
between Q1 and Q3, through mediation of the Q5 normal mode.

The method is presently restricted to the strictly classical
problem, which might be of use for making more efficient
dynamics studies of very large molecular systems. Further
improvements may consist of developing suitable semiclassical
or quantum mechanical versions of it, as well as its use for rate
constant calculations and related quantities. A major reason for
putting some effort in this method is that the use of a RPH-
type coordinate system appears well adapted, in principle, for
dealing with the multidimensional initial condition sampling
problem, present when these latter quantities are required. All
of these possibilities are being actively pursued in our laboratory.
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